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Self-Consistent Particle Dynamics

Example of self-consistent dynamics: two - body problem

In classical mechanics, the two-body problem is to determine the motion of two point particles that
interact only with each other according to the gravitational law:
m,m,
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Self-Consistent Approach to N-Particle Dynamics

Self-consistent approach: solution to the equations of motion of the particles,
together with the equations for the electromagnetic field that they create. Evolution
of charged particles interacting through long-range (Coulomb) forces is determined
by Viasov’s equation

d_f, o di, f dP _
de gy dt Hp dr

Solution of self-consistent problem: the phase space density, as a constant of
motion, can be expressed as a function of other constants of motion /;, 1, ....

f=fU1, D, ....)

This equation automatically obeys Vlasov's equation

d_ 9o dh  of db ,  _
dar ol dt olr dt

because of vanishing derivatives, dI;/dt = 0. Distribution function determined in
this way is then substituted to Maxwell’s equation to find self-consistent field

created by the beam together with the external electromagnetic field. 3
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Maxwell's Equations

Field created by the beam is

described by Maxwell's equations: space charge density:

p e OO o OO « OO
V-E=—
€0 p=q fdPydPydP,
V-B=0
B beam current density:
(
VxE= — e
()t c0o 0 co
OE i=q  VfdP.dP,dP
V x B = pod + poco— J qI ’ ] v fdPx dPydP;
ot Jow ) ) oo
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Field Equations

Instead of electric field £ and magnetic field B, it is common to use vector
potential A and scalar potential U:

. 0A
E=———9radU
ot 5

B =rotA

The field of the beam is described by the equations

2
AUp - 128 lgb=-£
c” Ot €Eo

= 5%A, ;
AAyp - 12 2b =-HoJ
c” Ot
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Lorentz Transformations
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Laboratory and moving systems of coordinates
Consider system of coordinates, which moves with the average beam velocity . We will

denote all values in this frame by prime symbol. Potentials U,A are connected with that in
laboratory system, U, A , by Lorentz transformation

A =y(A;+ﬁU')
C
=y (U + BcA)

Ar=Ax, Ay=A,
/*
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Self-Consistent Field Equation

In the moving system of coordinates, particles are static, therefore, vector potential of the

%'

beam equals to zero, A» =0. According to Lorentz transformations, components of vector
potential of the beam are converted into laboratory system of coordinates as follow

Axb :O ’ Ayb =( , Azbzﬁ%

In a particle beam, the vector potential and the scalar potential are related via the

expression A, :;Z /c 2Uy, therefore, it is sufficient to only solve the equation for the
scalar potential. Equation for scalar potential of moving bunched beam is

Uy , 0Us , 3°Up

x> Iy*  y2C°

—_ 1
gOP(x,y,C)
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Self-Consistent Field Equation

The unknown distribution function of the beam is then found by substituting equation for

distribution function into the field equation and solving it. For beam transport, equation
for unknown space charge potential 1s

. OO

AUy=-4 | f, b,..)dP

Eo
J -0

Equation for unknown potential of the beam together with Vlasov’s equation for beam
distribution function

g _ U, f de, I &P _
dt 9t ox dt  p dt

constitute self-consistent system of equations describing beam evolution in the field
created by the beam itself

A
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Applicability of Vlasov's Equation to Particle
Dynamics

Vlasov's equation describes behavior of interactive particles in self field.

Charged particles within the beam interact between themselves:

(1) interaction of large number of particles resulted in smoothed collective charge
density and current density distribution

(11) individual particle - particle collisions, when particles approach to each other
at the distance, much smaller than the average distance between particles.

First type of interaction results in generation of smoothed electromagnetic field,
which, being added to the field of external sources, act at the beam as an external
field.

The second type of interaction has a meaning of particle collisions resulting in
appearance of additional fluctuating electromagnetic fields.

A
=
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Applicability of Vlasov's Equation to Particle
Dynamics (cont.)

Using Vlasov's eqauiton, we formally expand it to dynamics of interacting
charged particles, assuming that the total electromagnetic filed of the

structure (U, X)
U=Ue:+ Up

A=A+ Ap
Uext, Aext, external field

U b, Ab field created by the beam.

and neglecting individual particle-particle interactions. Vlasov's equation
treats collisionless plasma, where individual particle-particle interactions are
negligible in comparison with the collective space charge field.
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Applicability of Vlasov's Equation to Particle
Dynamics (cont.)

Quantative treatment of validity of collisionless approximation dynamics to particle
dynamics: n - particle density within the beam, r - the average distance between
particles:

nr>=1 ,or r=n13
Individual particle-particle collisions are neglected, when kinetic energy of thermal
particle motion within the beam is much larger than potential energy of Coulomb

particle-particle interaction:

2
my; >> q

2 dme,r

2

V: 1s the root-mean square velocity of chaotic particle motion within the beam:

my? _kT
2 2
T 1sthe “temperature of chaotic particle motion
k /& 617342 x10° eV K'=1.3806504 x 10 J K" is the Boltsman's constant.
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Number of Particles in Debye Sphere

A«D — 80 kT
Radius of Debye shielding in plasma: q2n

Combining all equation one gets: r<<V2m Ap or (2m)*nA} >>1
Volume of Debye sphere is V = (4 /3)mA; and number of particles within Debye
sphereis N, = (4 /3)nzA..

Condition (277)”"” nﬂ,g >>] can be rewritten as

4
N, :gnnlf) >> 1

Individual particle-particle collisions can be neglected if number of particles within
Debye sphere is much larger than unity Np>>1 (or average distance between

particles is much smaller than 4).

Particle density within uniformly charged cylindrical beam of radius R, with current
I, propagating with longitudinal velocity fc, is

i n=——
, 2
) mTqpPcR
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel

Hamiltonian of charged particle

H=cV m2e? + (Pe- gAy) + (Py- gAY + (P, - gAY + q U

_— —>

Vector potential A =Amagn+ Ap

is @ combination of that of magnetic lenses, Amagn, and of that of the beam, Zb,

Scalar potential U=Ue + Up

is a combination of the scalar potential of the electrostatic focusing field, U,;, and of
the space charge potential of the beam, U,.
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Hamiltonian of Particle Motion in Quadrupole
Focusina Channel (cont.)

Vector - potential of an ideal magnetic quadrupole lens with gradient G inside the
lens is given by

G 2 2
Azmagnzz(x _y)

Electrostatic quadrupole with gradient G, creates the field with electrostatic potential

Uel = - Gzel (x2 - yz)

Transversal components of mechanical momentum are equal to that of canonical
momentum, p, = P,, p, = P,, and Hamiltonian can be written as:

K= c«/m2c2+p)%+py2+(PZ— c]AZ)2 +qU

Pk
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel (cont.)

In the moving system of coordinates, particles are static, therefore, vector potential of

the beam equals to zero, Xl;:(). According to Lorentz transformations, components
of vector potential of the beam are converted into laboratory system of coordinates
as follow

Axb =O

Ayp =0, Azp :ﬁ%
Total vector-potential of the structure is therefore

Z magn

A=A +ﬁUb
C

Kinetic energy of the beam is typically much larger than the potential energy of
focusing elements and than the potential energy of the beam. Therefore, P, >> gA.,
and we can substitute canonical momentum by the mechanical momentum:

(Pz'qu)zszz‘ZPz C]Az’““pzz‘zl?z qA;

It corresponds to the case when longitudinal particle motion is not affected by the
transverse motion, which is typical for beam transport.

/D
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel (cont.)

Hamiltonian can be rewritten as

2 2+ 2
K=mc2V(1+ 1212)+px212y-261pz14
m ¢ m ¢

L +qUe + qUyp

m?c?

The term in brackets is close to square of reduced particle energy:

P, 2
1+ ==Y
m-c

Taking that term out of square root gives for Hamiltonian:

2 2
+
K = mc? 1+Px Py _2qp:Ag + qUe + qUyp
(ymc) (ymc)
A

=3
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel (cont.)

After expansion of small terms V1+x=1+ x/2, the Hamiltonian becomes:

p)%+py2 2qp:(A; magn+§Ub)

K=nc?y + + qUe + qUp

2mcy 2mcy

Removing the constant mc’yresults in the general form of Hamiltonian in a focusing channel:

+
px—py + Q(Uel - ﬁCAZ magn) +q—— Ub

2my )/

H =

Both U, and A4, magn C@N be a combination of that of multipole lenses of an arbitrary
order.

- Los Alamos N
NATIONAL LABORATORY Y.K. Batygin Focusing of Intense Beams USPAS 2019 1 7
EST.1943
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA iR ¥ 'b@:ﬂ



Kapckinsky-Vladimirsky (KV) Beam Envelope Equations

Consider now dynamics of the beam in focusing quadrupole channel including space

charge forces of the beam. All particles move with the same longitudinal velocity fBc, and

the longitudinal space charge forces are equal to zero. Hamiltonian of particle motion in
qudrupole channel with space charge is given by

2+ 2 2 .2 U
H:px Py +qﬂcG(z)x 2y +qg—L . (2.96)
14

Assume that transverse space charge forces are linear functions of coordinates.
Correctness of this assumption will be checked later. Linear equation of motion are

d2

E—i_k (2)x=0 (2.97)
d? ,

dzzy Hh(@)y=0, (2.98)

where kx(2), ky(z) are modified focusing strengths including space charge. Equations of

motion (2.97), (2.98) are linear, therefore, invariant of Courant-Snyder, is valid in both
planes (x, x'), (v, ¥') for space charge regime as well.

2
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Courant-Snyder Invariants

Self-consistent solution can be obtained when distribution function is expressed as a

function of integrals of motion. Due to equations of motion in linear field are uncoupled,
Courant-Snyder invariants are conserved at every phase plane:

1 1 2
(xon-0vx)” + X5 =30 (2.99)
Ox
! 1 2 y2
yoy-oyy) + ?= 3y (2.100)
Y
X' y'
A
' ' 2 2 ? ' _ 2 yz -
(X Ox - Ox x) + X _=)>, (yO'\ 0'\)’) +—7—3.\
o Oy

4»
>
/ X y

Courant-Snyder invariants.
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KV Distribution Function

Values of 3x, 3 are areas of ellipses at phase planes (beam emittances), which are the
constants of motion during beam transport. Let us express beam distribution function as a

function of values 3x, EN

f=fo 0(3x+3y-Fo) (2.101)
where f,, F, v are constants defined below and 6 (§) is the Dirac delta -function:
©,£=0
GER] 0. Ex0 - (2.102)
-b 0, X<a, X>b,
fHO(EX)dE={ 12(X), X=a or X=b, (2.103)
Ja X)), a<X<b '

In the selected distribution, Eq. (2.101), particles are placed at the surface of four-
dimensional ellipsoid:

2

' ' ! 2 2 ' 2 y
F(x,x,y,y )=(X0ox-0wx) +2~+ (y'oy-0yy) + 7— -F, =0
52 o2 (2.104)
) X Yy
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Boundary of (x - y) Projection of KV Beam Distribution

Let us find boundary of projection of the surface F(x,x,y,y)=0 on the plane (x, y). Boundary of
projection of the four-dimensional surface F(x,x,y,y)=0 on arbitrary two-dimensional plane is

obtained by equating to zero the partial derivatives of function F(x,x ,y,y ") over the rest of variables:

oF(x, X, v, y) _ oF(x, X, y, y) 0

0
o : oy’ : (2.105)

and substitution of the solutions of equations (2.105) into equation F(x,x,y,y)=0. Actually, for every
fixed value of x, the point at the boundary of projection corresponds to maximum possible value of y:

dy dy _
9% _p 9Y =0
P : oy (2.106)
or, according to differentiation of implicit functions,
OF oF
dy __ox dy _ 9y
ax'  OF dy  IF (2.107)
dy dy
which coincides with Eq. (2.105).
2
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Boundary of x-y Projection of KV Beam
Distribution (cont.)

Partial derivatives over variables x', y' in equation of four-dimensional ellipsoid are:

oF
dx'

=2 (x O - G;Cx)ax =0

GF ! !

— =2 0y -0yy)oy =0

dy'

Substitution of solution of equations dF/dx =0, dF/3dy'=0 into equation F(x,x,y,y)=0
gives the expression for the boundary of particle projection on plane (x, y):

or O

Therefore, particles of KV beam distribution are surrounded by ellipse with semi-axes
Ri=0\F, ,Ry= Gy\/F—o and the area of ellipse S=m 0x OyF,.

D
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Boundary of (x - y) Projection of KV Beam Distribution (cont.)

Boundary of projection of KV beam on (x,y).
e

=
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Space Charge Density of KV Beam

Space charge density of the beam is an integral of distribution function over the rest variables
x', y"

1 ! 2 2 ' 1 2
p(xy)=f, S{(X 0 -0 + X +(y'oy-0py) +2
J=c ) =00 O-Jg O-}g

2
_Fdx'dy'.  (2.111)

To find particle density, Eq.(2.111), let us make substitution of the new variables, ¢, €2, for
old variables, x', y', according to transformation:

(XOy - Oy D=0 cosQ , (2.112)

('O - Oy y) =0 sinQ - (2.113)

Inverse transformation is

x =1 (0 cosQ + x0) (2.114)
Ox
y‘:L(a sinQ + yo';,) . (2.115)
O'y
ax ox
: - | 9o 082 o do dQ
Phase-space element is transformed according to: dx dy = dodQ =*exdss (2.116)
dy dy’ Ox Oy
/\ dor 0Q2
=D
- Los Alamos o
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Space Charge Density of KV Beam (cont.)

With introduced transformation, Eqgs. (2.112), (2.113), the space charge density of the
beam is

.2.77: - 0O
2 oo
p(x, y)=—To S +X + X F)adad? _ T (51 XY 1y do?
Ox Oy 2 2 = o0 2 2 0
Jo JO Ox Uy XYy o X y
Let us use one more transformation: a’ = u, (2.118)
2
2
A+ Yo o=-Uo
o2 Gy2 ) (2.119)

With new transformation, space charge density is

P (x, y)=£a% O (u-uo) du . (2.120)

JO

As far as the value of u, 1s always positive inside the ellipse, Eq. (2.110), the integral over
delta function in Eq. (2.120) is equal to unity and space charge density is equal to constant:

_ TTjo _
X, V)= =
Pl M= o (2.121)
K)fjdistribution gives projection on plane (x, y) as uniformly populated ellipse, Eq. (2.110).
» Los Alamos

NATIONAL LABORATORY Y.K. Batygin Focusing of Intense Beams USPAS 2019 25
EST.1943

S 94
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA iR ¥ 'DO&‘;



Space Charge Density of KV Beam (cont.)

Space charge density of elliptical beam with current /, semi-axis R,, R, and longitudinal

velocity Bis
Do = m (2.122)
1.0} ' ' '
-
_10}

Projection of KV beam on (x,y).
» Los Alamos
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Boundary of KV Beam Distribution at x-x’

Consider particle distribution at phase plane (x, x'). Follow the method described above and
put the following derivatives over variables y, y' to zero
aF(X,X',y,y') =0 8F(x, x’ Y y'):
dy ’ dy’

Substitution of the solution of Egs. (2.123) into Eq. (2.101) gives us the boundary of
particle distribution at phase plane (x, x'):

0 (2.123)

X LX) + X =F

X0y -0xx) + - -=Fo (2.124)
Ox

which is also the ellipse. To find an area of ellipse, let us change the variables:

X =r,cos 6

{ > (2.125)

! I .
XOy-X Oy=Ty Sin6 °

Transformation, Eq. (2.125), in explicit form is

A X=ry Oy cOS 0
/ /j ' r .
» Los Alamos X =ry OxcosO -* sin0 - (2.126)
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Boundary of KV Beam Distribution at x-x’ (cont.)

Phase space element 1s transformed analogously to Eq. (2.116) as

dx dx =rydry d6 (2.127)

With the new variables, equation for the ellipse boundary, Eq. (2.124), is r£ =F,. Area of
the ellipse, occupied by the particles, is:

2n [ Fy

S =

rxdrx d9=J'L’FO

JO JO

(2.128)

Therefore, parameter F,, =3, is equal to beam emittance at phase plane (x, x").
Xl

/ e
Boundary of KV beam projection on (x,x ). / »>
X
2,

» Los Alamos
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KV Beam Distribution at x-x’ (cont.)

Distribution of particles at phase plane, o« (x,x), is obtained via integration of distribution
function, Eq. (2.101), over remaining variables y, y"

. OO . OO

o ' s 2 ﬁ ‘ s 2 ﬁ_ |
o (xx)=f, | ’ O{(x Ox - Oxx) + = +(y' oy - oyy) + o7 FoYdydy ’ (2.129)

Let us make transformation from variables y, y' to new variables T, v in Eq. (2.129):
2
Y

2 Voo
(y Oy-0yy) =Tcosy , = Dsiny (2.130)

Oy
Phase space element dy dy’ is transformed analogously to (2.116):

dydy =TdT dy . (2.132)
Integration of Eq. (2.129) gives distribution in phase plane px(x, X) = py(r?):

Px(”%):ﬂfol I 5(”x2+T2-Fo)Tdel/J :”fO- (2.133)

JOo JO

Integral, Eq. (2.133), is evaluated in the same way as that in Eq. (2.117). Therefore, distribution

A
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KV Beam Distribution on x-x’, y-y’

2107 ' T ' i - 21073

1103

-1-10-3

—-21073

1.0

— 1103}

-1-1073

—2-1 0—3

Projection of KV beam on (x-x’) Projection of KV beam on (y-y°)

KV distribution provides two-dimensional elliptical projections at every

. pair of phase-space coordinates with uniform particle distribution within
Los Alamos each ellipse.
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Space Charge Potential of Elliptical Beam

Potential of the beam, U,, is to be found from Poisson’s equation:
iUy , 8°Up __p)

92 dy?2 Eo (2.136)
where space charge density
J— x4 Y i <1
7PcRiRy R? R?
p(2) =
0 20 (2.137)
R? R}

Solution of Eq. (2.136) for potential of elliptical charged cylinder with current 7 and beam
envelopes R, R, is:

R -R
U xa ) Z =- I x2 + 2 -u x2 - 2
R deofcRiRy ey Ry + R, -y , (2.138)

and field components E = —gradU, are:

Ex = I X E. = I
mEocR(R: + Ry) ! moﬂcRy(Rx+Ry)y (2.139)

Uniformly populated beam with elliptical cross section provides linear space charge forces.
Therefore, initial suggestion about linearity of particle equations of motion in presence of
~_kpace charge forces is correct.
. Los Af: 7
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KV Envelope Equations

Hamiltonian of particle motion within the beam with elliptical cross
section 1s:

p.+tp (x>=»%) ql ) R —R

_ P o T2 (20141
2 47r80ﬁy2cRny[x Y Rx+Ry(x vl (214D

Equations of particle motion in presence of space charge forces are:

d’x 4 [k (2)- 41 1 x=0
dz> Ic,33]/3Rx(Rx +R) , (2.142)
d?y 41
—+ [ky(2) - 1y =0
i 2.143
Characteristic current: I, =4ne, . 3.13-10’ E[Ampere]

Egs. (2.142), (2.143) are similar to that without space chgrge forces,
where instead of functions k.(z), k,(z) the modified functions k.(z), k,(z) are

used:
k(@) = k() - , (2.144)
I B"7’R(Rx + R))
i ky(2) = ky(2) - 41 (2.145)
. Los Alamos le By Ry(Re + Ry)
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KV Envelope Equations (cont.)

Substitution of expressions (2.144), (2.145) instead of k.(z), ky(z) into envelope equations
(2.56), (2.57) gives us the KV envelope equations for the beam with space charge forces:

2 2
d"Rx 3% | k ()R, - 41 =0 (2.146)
dz> R} LB 73R +R))
d’R, 3
2 4 k(D) Ry - 41 =0, (2.147)
dz> R} LB YR +Ry)

Equations (2.146), (2.147) are non-linear differential equations of the second order. They
can be formally derived from Hamiltonian:

2 2 2 2
+kx(z)sz+ky(z)Rzy+2len L4 9% 49y

Re+Ry  2R? 2R?

2 (R 2
H:(RX) +( )’)
2 2

, (2.148)
where parameter P’ is called the generalized perveance
pr=—2l .
LBy
pal
» Los Alamos

NATIONAL LABORATORY

(2.149)
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KV Envelope Equations (cont.)

In general case, solution of the set of envelope equations, Eqgs. (2.146), (2.147) are non-
periodic functions, which corresponds to envelopes of unmatched beam. However, if
functions k,.(z), k,(z) are periodic, there is a periodic solution of envelope equations.
Envelope equations can be solved numerically at the p eriod of structure via varying the initial

conditions R.(0),R.(0),R,(0),Ry(0) unless the solution at the end of period coinsides with

initial conditions R, (L)=R.(0), R.(L) =R:(0), Ry(L)=Ry(0), R; (L) =Ry'(0). Again, as in case of
beam with negligible current, this beam is called the matched beam. It occupies the smallest
fraction of aperture of the channel.

/)
| @

15N

t\q]

The envelope of unmatched beam
N in @ quadrupole channel

)
» Los Alamos
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Averaged Beam Envelopes

Consider  periodic  focusing  structure with  periodic focusing function

k(z) =k (z)= —ky(z). For focusing channels, where phase advance f, <60°, one can
use smooth approximation to beam envelopes. Let us rewrite envelope equations as

IR, _ _46@ , JU(R,,R)) d’R, _4G@) 5 _ JU(R,,R))
dz’ mcfy OR, dz>  mcfy ° IR,
where potential function
2 32
UR,R)=-— In(R + R )+ 42
g 1.(By) " 2R, 2R,

Analogously to particle trajectories in smoothed approximation, solution for beam
envelopes can be represented as

R:(2)=R: (2) + &(2) Ry(2)=Ry (2)+ &(2)

where Ry (Z), Ry (2) are smoothed envelopes, and ix (2), éy(z) are small fast oscillating

N

G
functions. After averaging, fast oscillating term is substituted as 96(2) > (,LLO )2.
A mc Py S
)
- Los Alamos

NATIONAL LABORATORY
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Averaged Beam Envelopes

Equations for smooth envelopes are

PR w0 41
d2_1_33+Ssz_[ 3, =——=0
< X c(ﬂy) (Rx+Ry)

2D 2
dRy 9y +H§— 41

—= R - =0
2 R’ S* 7 I(By)(R +R)

Small oscillating functions are determined by fast oscillating terms only.
Therefore, solution for small oscillating parts are are the same as that for
single-particle:

- . 2 t —

Solution of envelope equations in smooth approximations are

R(2)=R ()[l+v,. sin(27r§)]

/O
° L/ojsAIamos

NATIONAL LABORATORY

R,(2)= R (2)[1 -V, sin(27r§)]
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Matched Beam with Negligible Current

In the limit of negligible current, I = 0, envelope equations are decoupled. Consider

matched beam, Rx =Ry =0, with equal emittances in both planes 3x =3y =3:

2 2 2 2
E) - E) -
__—3-|—'LL—(2)Rx:0, —_—3+u—gRy:O
RS R*'S
: . B _p N
Equations have the common solution, R, =R, =R, : R’="—
H,

It defines the averaged beam radius in quadrupole channel for the beam with
negligible space charge forces. Beam envelopes for negligible current:

R(z)=R[l+v_ sin(7m é)] R,(z)= R [1-,, sin(27r§)]
where relative amplitude of envelope oscillation in FODO channel from averaging
method:
. D
7 sin(zw—)
v = S 11 ~0.2026u (for D << S)
» [,_4D P
n’ 1-—= (m)
S S
% R=|- > Vo = £,

. Los Alamos Matrix method gave for FODO channel:  ° singg, , 4

NATIONAL LABORATORY
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Matched Beam with Negligible Current (cont.)

1.6

1.4-

L R,(1+0.,,) ;
AV, N7&

AN AN

SAVA A

0-4 -_ o0 max

0.2

0.0

Z

» Los Alamos

NATIONAL LABORATORY
T.194

1 1 1 1 1 1 1 1 | 1
0O 25 50 75 100 125 150 175 200 225 250
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Acceptance of the Channel from Envelope Equations

Aperture, a, 1s reached by the beam with maximum possible emittance in the points where
R (1+v,, )=a. Acceptance of the channel obtained from envelope equations:

__ay,
“ o SA+v, )

Acceptance of FODO channel with thin lenses, D /S << 1, estimated from envelope equations, is:

__an,
5 (1+0.203u,)

Normalized acceptance of the channels: €, = ByA 20

(&

W Aperturea=R (1+v_, ) |
Compare with FODO acceptance 3
obtained from matrix method:
a’ sinu
A= ° SR [ 0 | |
5 (1 + sint) I
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
/\ O'OO 125 50 75 100 125 150 175 200 225 250
= z (cm)
» Los Alamos
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Beam Radius in Space-Charge Dominated Regime

When space charge forces are not negligible, smoothed KV equations

for matched beam, I?x" :Ey" =0:

2 2 . 41 2 2 . 41
) ‘LLO O, —3—3+H3R - 3, = p— :O
RS L(By) (R +R,)

y

=5 T 2Rx_ 35 B\
R} S I.(By)Y (R, +R)

X

S 3w 21
Equations have common solution R =R =R,: ——+—FR, - —=0
R, S I.(BY)'R,

e

R! 2IR?
R, - 03 - 30 2 = 0
Re IC (ﬁ,}/) Re 3

Which can be rewritten as

From the last equation, the averaged beam radius in space — charge regime is
expressed via beam radius with negligible space charge forces as

R = RO\/bO +4/1+b’

: 1 I R, 1 I R
where b, is the space charge parameter b (—*)" = (

0:([37)3lc > Prl, €

Y.K. Batygin Focusing of Intense Beams USPAS 2019
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)
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Matched Beam Envelopes Versus Beam Current

=0 [ #0

1.6 T ™71 ' 1 — 1 T 1 71 ' 1 1.6
1.4 ‘ 1.4

- (I1+v -
1:2 j 1.2
1.0 - — 1.0
0.8 : i 0.8 . | ,
0.6 - 0.6 - | Re (1 _ vmax ) ]
0.4 - — 0.4} ~ - ' - ~ | . - | .
0.2] 1 oof L [ [y 1 | § | ]
O_O I 1 1 | 1 | 1 1 | 1 | 1 1 [i 1 | 1 ] 0.0 i 1 | 1 | L | ! | 1 | 1 | L | 1 n. | 1 -‘

0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250

Z Z

Envelopes of the beam with negligible current and non-negligible current. While average beam
radius is different, relative amplitude of envelope oscillations is the same in smooth
approximation

Ak
> IEAIamos

NATIONAL LABORATORY
EST.1943
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Matched Beam Versus Beam Current (cont.)

I1=0

Acceptarice

41 I .
. ! . L . L
-1 0 1
X
B T T T

I#0

-2.01074 -

-4.0107%

Acceptance
i

41074 .

2104+

41074

i
VpiNy

/ T
y i

Ellipses of
matched beam
with non-zero
current no longer
coincide with

Floquet ellipses.
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Depressed Transverse Oscillation Frequency

Egs. (2.142), (2.143) define particle trajectory in quadrupole channel in presence of space charge

field of the uniformly populated beam with elliptical cross-section. TakingR_ = R

= R , equation
y e

for single particle trajectory in smoothed approximation is
d’X o u’ 21
i’ S L(Py)'R;

and similar for y - direction. It can be re-written as

1X=0,

d*X u’
2 + ‘u2
dz S

X=0,

where (1 is the averaged betatron frequency in presence of space charge forces, which is also
called the depressed betaron tune:

., 2 S,
u _ILLO Ic(ﬁ'}/)3(R€)

Equation for depressed betatron tune indicates that space charge forces result in reduction of
freﬂ;;ency of transverse oscillations. It can be rewritten as

) _ \/72
- Los Alamos u=pu,(\1+b, =0b,) . S
NATIONAL LABORATORY .K. Batygin Focusing of Intense Beams USPAS 2019
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Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA N ¥ 'DO&‘;

LAY~ o



Effect of Space Charge on Beam Size and Phase Advance

Transverse oscillation frequency drops with increase of beam current, but remains non-zero.
Therefore, beam stability can be provided at any value of beam current. However, increase of

beam current requires increase of aperture

of the channel, and stability of transverse

oscillations can be provided at arbitrary high value of beam current, but in the channel with

infinitely large aperture.

Ratio of depressed to undepressed phase shift

u 2 1
—=4/1+b, —b, =
H, J1+b> +b,

serves as an indication of space charge
dominance:

ul/u, <0.7
regime,
W/, >0.7 emittance dominated regime.

space-charge-dominated

e
/Los Alamos

NATIONAL LABORATORY
EST.1943

T | T | T T | T

0
0

Averaged beam radius and transverse
oscillation frequency as functions of space
charge parameter b,
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Beam Current Limit

TT I T T T T

NI i a= R(1+v,,)
é”\//\\R//\ /
N AVARNANNZE
|-LIO.4

00

. . : | Sl ; i i
0 26 B0 75 100 125 150 175 200 225 250
z (cm)

Beam current limit corresponds to the beam, which fills
in all available aperture.

9
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Beam Current Limit (cont.)

Maximum beam current in quadrupole focusing channel corresponds to the beam,
which fills in all available aperture, a = R(1+v

max)'

a= \/ZE\/b +41+b> 1+, )

For b,= 0, this equation describes the beam with maximum possible emittance in
the channel, equal to acceptance of the channel, 3=A4,  :

Aenv S

a= (I+v

max )
o

Ratio of equations gives us the relationship between acceptance of the channel and
the maximum emittance of the beam with non-zero current, which fills in all

aperture of the channel:
3=A (J1+b’ b))

Substitution of the expression for space charge parameter b, gives for maximum
transported beam current:

. u 3
— _ciTo 311 _ (=2 \2
ljj Imax - 2 S env(ﬁy) [1 (A ) ]
- Los Alamos o
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Non-Uniform Beam Equilibrium in Linear Field

In general case, the Hamiltonian is not a constant of motion, because potentlals can depend on time,

A A(t) U=U(t)- Note that even if the potentlals of the external field, A ext, Uexs, are time-

independent, the beam field potentials, Ab, U,, might still depend on time, and the Hamiltonian
remains time-dependent. If an additional condition of matching the beam with the channel (where
the beam distribution remains stationary) is applied, explicit dependence on time disappears from the
beam potentials. In this case, the Hamiltonian becomes time-independent, and therefore, is an
integral of motion. The Hamiltonian, can then be used to find the unknown distribution function of
the beam via the expression f = f (H) and the subsequent solution of equation for space charge
potential (Kapchinsky, 1985).

Hamiltonian corresponding to the motion in averaged linear focusing field 1s given by

2 2
Px +py myQ (x +y2)+qu
Zmy 2 )/2’

H=

(4.26)

where (2, is the frequency of smoothed particle oscillations. If the beam is matched

with the continuous channel, space charge potential U, is constant, and Hamiltonian
is a constant of motion.

A
=3
» Los Alamos
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Let us transform Hamiltonian, Eq. (4.26), to another one, multiplying Eq. (4.26)
by a constant:

12
k= " 4.39
2
my (fc) (4.39)
It corresponds to changing of independent time variable ¢ for dimensionless

time 7 =¢fc/L. New Hamiltonian is given by
.2 .2 2 2
XY Mo (2 +y2)+ gL" Uy

K
2 2 mey3 g (4.40)

where X =dx/dv, y=dy/dt Let us use particle radius R*=x2+y? and total

2 .2 .2
transverse momentum P~ =x" +y"  where

x=Pcos 6, y=Psin0, (4.41)
Hamiltonian, Eq. (4.40), 1s now
2
_P2 U5 p2, 9L U

A K="+ R“+
/Los Alamos 2 2 me?y3p’ (4.42)
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Consider the following distribution:

fz{fo, K=<K,

0. K>K, - (4.43)

According to transformation, Eq. (4.41), space charge density of the beam is expressed as
* Pmax(R)
p(R)=2mqfo PdP =7 q fy Prax(R)

J O

For each value of R, the maximum value of transverse momentum P,,,, (R) 1s achieved
for K = K,. From Eq. (4.40)

(4.44)

2
P2ar (R)=2K, - ulR? - 29 L Ub
Therefore, space charge density, Eq. (4.44), is
2¢gL*U
p(R=mqf> 2K, - uiR?- =4 %)
me? )/3ﬁ2 : (4.46)
Poisson’s equation for unknown space charge potential of the beam U, is
7qf, 2¢qL*U
L/:;gAlamos R%die (R ddl;;) ~ gf (K- iR == b2) (4.47)
NATIONA{LSYL.AQ?ZIORATORY 0 mc 2 y 3[5 ) ) 49
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Let us introduce notation:
2
Ro = EoM € 2/3 y ’ — R
2nq2f0L2 , Ro, (4.48)
Then, Poisson’s equation, Eq. (4.47) 1s

Li(_g@)_ Uy, =m02/32 Y : (M02S2R02 “K,)
Sds  ds g L> 2 : (4.49)
Solution of differential equation (4.49) is a combination of general solution of the

: (u) : .
homogeneous equation U, =Co l(s) and of a particular solution of non-homogeneous

. (n)
equation U, =C15%+Cz :

2 3 2 2
Uy =B Y (2 u2R2 - K, )(Uu(s) - 1) - 408 °Ro 5
e > 1 @sy

Space charge density profile

ACES
plop By= Lo 1Ko
Ro' (1. 2D(sy) L(sp) )
Sp Lo(sp) ’ '
[\7 Ry,
o !_A(TI)OSN /{\Igmgﬂ§ where the following notation is used: S =R_o




Non-Uniform Beam Equilibrium in Linear Field (cont.)

2.0

0.1

1.5 5

: AR

0.5

P/P,

0.0
0.0 0.2 0.4 0.6 0.8 1.0

R/Ry

Density profile, Eq. (4.74), for different values of parameter s,

i
° L/ojs Alamos
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Non-Uniform Beam Equilibrium in Linear Field (cont.)
Projection of the volume at the phase plane (x, x):
2

S el s, X)) =1
o\V) -
4M02R13 I,(sp) R}, . (4.65)

Eq. (4.65) describes the boundary of phase space of the beam at the plane (x, x).

X
A
50
5
0.1
>
X
A Boundary phase space trajectories of particles, Eq.
L:)g Al (4.65), for different values of parameter s,.
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Similar results can be obtained for another distribution function

H
=1, eXP(—FO)

P/Po

Space charge density for different distributions:
(solid) f=f,H<H,
(dotted) f=fexp(-H/H,)

RIR,
9
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Performed anlysis shows, that for small values of space charge
forces, particle phase space trajectories are close to elliptical, and
beam profile density 1s essentially nonlinear. With increase of space
charge forces, boundary particle trajectories become more close to
rectangular, and density beam profile becomes more uniform. In
space charge dominated regime, stationary beam profile tend to be

uniform, and space charge field of the beam compensates for external
field.

A
=3
» Los Alamos
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Rms Beam Envelopes

Set of equations for the first and the second moments of distribution
function in x-direction

d < x>=<p,>
dt

i<vx>= 1 < F\>

dr my

d < v, >=<v2> + 1 < xF.>
dt my

ﬁ<x2>=2< XV >

i<v%>=L<vxe>
dt my

where the Lorentz force in x-directionis  F'. =g (E, + vyB;-v;By)
A

—)
» Los Alamos
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Rms Beam Envelopes (cont.)

Taking into account that Vx =V; X and introducing notation

fx - Fx 5
my (B:c)

the set of moment equations is

d < x>=<x'>
dz

d cx>s=<f>
dz /

' 2
di< XX >=<x > +< xfy>
<

d cx2>=2< xx'>
dz

/N
- d .%o 9cy
- Los Alamos L<x >=2<x fi>

NATIONAL LABORATORY dZ
EST.1943
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Conservation of RMS Beam Emittance in Linear
Field

Square of 4-rms beam
q 32=16(<x” ><x” >—<xx'>)

emittance
Derivative of square of 4-rms d3> 5 . .
beam emittance dzx =32(<x*><x fi>-<xx> < xfy>)

If Lorentz force is linear with

. = 2
coordlnat_e, f, = .kx , the rms ddx =32k (<x2><x x>-<xx> <x2>)=0
beam emittance is a constant of dz
motion
A In nonlinear field rms emittance is not conserved.
=)
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Rms Beam Envelopes (F.Sacherer, P.Lapostolle, PAC 1971)

_ >~ 2 ~
Rms envelope equations d°X _3x 4 k()X - 4l -
dz* X I By (X+7)

2,\, 3% " 4
d7Y %Y 4 ky(2) Y - [ -
dz* y I. By’ (X+7Y)

2-rms beam envelopes Ry =X=2V<x*> Ry = Y=21 <y?>

| 3, =4J< x> >< x> —<xx'>
4-rms beam emittances

— 2 12 12
3y—4\/<y >y > —<yy'>

RMS envelope equations are valid for arbitrary distribution, but rms
emlattnce is no longer constant. RMS envelope equations are not

Los A?g r%%s
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Particle Distributions with Elliptical Symmetry in 4D Phase Space
Consider quadratic from of 4-dimensional phase space variables:

I=(cx—0x)+ (Gi)2 +(o,y -0, y) + (Gl)2

X y

Consider different distributions /' = f(I) in phase space which depend on
quadratic form:

2
Water Bag: T F2° I<F,
=1 0, I>F,
6 I
: = 1-—
Parabolic: y n’F’ ( F )
Gaussian: f= 1 ex (_L)
| 7F U F,
Pa Normalization: J j J J fdxdx'dydy'=1
/j s
» Los Alamos

NATIONAL LABORATORY
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Characteristics of 4D Beam Distributions

Distribution Definition Distribution in Space charge Space charge field
p(x,x',y,y")=p(I) phase space density
I=rl+r px,x")=p(r})
r:=y x*+20 xx'+ f x"
r_\'2 — y_\'yz + 2a_\vyy'+ ﬂyylz
KV 1 1  § I
’F, 2 T, TR Be 2me R*Be
Water Ba 2 2 ; 2
5 — I<F, S 4By | g fT el Fal
n°F, 3ty 33 3tR°Bc 3R 3me Bc R 3R
Parabolic 6 I 3 r? 3] y2 ¥ 2 -
2 2( _—) (1_ 3 )2 2 (1_ 2)2 2(1_ 2+ 4)
n’F>" F 2m> 25 | 2nR’Bc’ 2R* | 4meBcR* 2R* 12R
Gaussian 1 I 2 r2 2] ) 72
exp(—— —exp(—2 -+ exp(—2— 1-exp(-2—
ZF; & P F ) ), P 3, ) R? Be p( R? 270£0ﬁcr [ p( R? )
2
- Los Alamos e
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Projections of 4D Distributions on Phase Planes

KV

Water Bag

Parabolic

Gaussian

£

=)
- Los Alamos

Y.K Batygin [ Nuclear Instruments and Methods in Physics Research A 539 (2005) 455-489
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Particle distributions with equal values of rms emittance.
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Projections of 4D Distributions on Phase Plane

Projections of 4D Distributions on phase plane (x-x’) is

the integral of distribution over remaining variables O (x x') = l f(x,x,y,y) dy dy
Let us change the variables (7> ) for new variables T,y Oyy'- Oyy =T cos y
Phase space element dy dy’ is transformed as ; =T siny
y
dy 9y
dydy = T WV \aray=Tdrdy

gy’ 0y
aT oy

The quadratic formis [=r2 + T2 where the following notation is used:

2
12 = (o' + crx'x)2 + (),

X

With new variables, the projection on phase space is

* 0O

e pr(x, Y= | fe2+T*dl?
2
» Los Alamos Jo

NATIONAL LABORATORY
T 1043
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Projections of 4D Distributions on Phase Plane (cont.)

22 ~, [=r’+T? <F, is restricted by surface
Water Bag distribution F={ nF,
0, I>F r2+T:=F,, T:=F,-r?
T2
Projection of Water Bag distribution on (X-x)  p, (x, #)=—2— arr=-2_(1 _i’_xz)
7Z'F2 ﬂFo FO
o JO
For Parabolic distribution, projection on (x-x") 1s:
T 2, T2 2 2
per y=-06_| - gr22 3 (115
T F02 . O FO ﬂFO FO

For Gaussian distribution projection on x, x' plane 1s

* 00

r2 4+ T2 2 1 r2
exp (-T2 VAT =L exp(-1£
) p( F ) F p( Fo)

o (x, H)=—1_
F?

/)
> L;?sAlamos

NATIONAL LABORATORY
1943
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Rms Emittance of 4D Beam Distributions

* 00
Four rms beam emittance S=4r| R p(ddr,
J O
VF,
=0 BTy dr =2 F
Water bag distribution: “* ™ X r=, 00
F, lo F,
VE, :
gt 1 3 rk _F,
Parabolic distribution ~ x=-* re (1- F—) dr==2
o Jo o

(@0)
2
Gaussian distribution: x= 4 rRexp (- ) dr,=2F,
°Jo
/D
2
» Los Alamos

NATIONAL LABORATORY
1943

o
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Fraction of Particles Residing within a Specific Emittance

Fraction of particles within specific emittance NG) = yrj o (rxz) drx2

Beam distribution

Fraction of particles within
emittance 3

( 3 .= 4rms emittance)

2
Water bag (¢ =4 (1-27%)
3w 3 %

5 2
Parabolic px(r% -3 (1- i
27T 3y 2 9
Gaussian px(rx) = exp( ) i)
A T3¢
» Los Alamos

NATIONAL LABORATORY
43

m=4_(i)(1_Li)
N, 3 > 3 3

NG _3 3y.13 41 (9)2]
NO 2 Iy 23% 12 3

NG _q. exp(-22)
N, 3

Y.K. Batygin Focusing of Intense Beams USPAS 2019 6 5
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Fraction of Particles Residing within a Specific Emittance

KV WB PB GS

PN W Vv

.

.
o
.
o
.

N/N_,.

8 / grms

Ao Fraction of particles versus rms emittacnesfor different particle distributions.
S p Y
» Los Alamos
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Coherent Beam Oscillations

S \
4 ¢
|t

7 W 7
i,
A
Misalignments of the channel results in

oscillation of center of beam gravity

Potential of the beam shifted from axis

2 o
Ub(r,a):_ﬁ(r2 ~2x cos8)— Z?C Y %(Ri)m(;o )" cos mb

0 o m=1 T

Frequency of oscillations of Y S y 21
% center of gravit Heon = Ho R~ 1(By)
» Los Alamos gravity s
NATIONAL L.A?!ORATORY =
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Envelope Instability

Averaging procedure (smooth approximation) was based on assumption that

solution of envelope equations are stable

d’R, >’ F KR 2P’ 0
_ DR —— =
Envelope Equations dz? R (R, +R))
R, 3 2P’
5~ =5 k@R, —————=0
dz R; (R, +R))

Let us represent solution as a combination of R (z)=R (2)+& ()
periodic solutions R (z), R (z)and deviations

from that  &,(2), &, (2) R, (2)=R,(2)+& (2)
Equations for deviations from periodic &+ e (2)+ éyao(z) =0
solution: .
&, +6,a,(2)+8,a,(2)=0
2P’ 2 > p? 2 )
a,(2)=—=—= a (2)=k(z +3,3f+ — = — + 9y+ 2P
(R.+R,y (@) =K@+ 3% R+Ry “O="hQ 31,,éj Rl
2
o h?(iﬁ ]93!!223 Y.K. Batygin Focusing of Intense Beams USPAS 2019 68
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Envelope Oscillations Modes

~

In smooth approximation R, = f?y =R and g +&a, +g a, =0
equations for deviations from periodic
solution, where coefficients E+Ea+Ea,=0
P2 2 2 2
a4, = 52 alzaz_‘uz 332 52
2R L R* 2R
Taking into account expression for phase w=pu’ —P2(£)2
advances (depressed and undepressed), , R
as well as expression for unnormalized 5= UR
beam emittance, we get equations for L

oscillations of two envelope modes

2
. o
Symmetric envelope mode & +E)"+ %(éjx +£)=0| o0, = \/2(/45 +u)
: . 62 . 2 2
Anti-symmetric envelope mode & _gy),.+LL§d(§x ~£)=0 O, =M +3U
Envelope Instability: 0., =1380° or 0, =180°
A
2
LosAIamos
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Envelope Instability (cont.)

210 ———
200 [ 1
?D 1901 Geven - 2lLl/O + (_) < 21LL
O 180 2 2 u,
= 170f .
X 160F
B —_ — -
S 10F || | ™ | Gdd—z.uo 4+4(‘u) <2.u
% 140_‘ ' ' ' 'u()dd N ' ' ' ]
3. 130 . . | | | AN | | | ]
120 ——— ] : - 0
Mof T No instability for 4, <90
1005110700 80 80 70 60 50 40 30 20 10 0
H (deg)
Mismatching envelope y
modes for y,=104° as 16
functions of space-charge 47
depressed phase advance, : - e
IJ- E Z.GGEH J]ﬂ() |'I||| ﬂrl - lj\rlijf :1'{']:'- :: ::A ;-: LS 4.[ l{
0,4—%" \f u” 'u A u\}',f\}r 1|, ' I | l '
0.2 . d ' I
P T . T
f_? AI Zcm)
» LOS Alamos : e .
NATIONAL LABORATORY Envelope instability in FODO channel with y,=104°, u=72°.
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Multipole KV Beam Instability Modes
(.LHofmann, L.Laslett, L.Smith, 1983)

even modes odd modes

P

p. I.O/js Al amo: FIG. 1. Beam cross sections for second, third and fourth order

nationaL Lasorator  even and odd modes (schematic, with x horizontal and y vertical

N
—

EST.1943

‘ coordinates).
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Multipole KV Beam Instability Modes

Eigenmode grequencies and amplitude growth

rates can be derived analytically from analysis of = TRANSPORT OF HIGH-INTENSITY BEAMS 93

small perturbtion of 4D distribution function: o

fpLy.p,.0=fo(x,p.y,p)+ [i(x,p,,y,p,.1) =
- f;)(HOXJ*HOy)_I_]pl(xﬂpxﬂyﬂpyﬂt)

by :
dt -
Poisson’s equation for perturbed electrostatic
potential created by perturbed space charge
density: ]
q q *
V2<I>:——n=——f dp.dp., — ]
€o 1 €0 fl Px p} 6l j
The solution for perturbed distribution function and 7 j
beam potential is being searched as ol ]
G1 ) 20 20 q
—la — N\, e (b)
( ](JT-’ (I)_ (I) )e Il
/~ fl fl "P 7 o ( ¢ R F1G. 19. Instability bands in the phase advance ¢ for a FODO channel (y = ) and dif-
4 ferent ¢ : (a) “‘third-order”™ modes and (b) “‘fourth-order’” modes.

a3
- Los Alamos
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3rd Order KV Beam Instability in FODO Channel

0.05 ——
0.04f N=0 -
0.03- ]
0.02]- ]
0.01f
0.00[

-0.01f

_002 -_ -
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005 " 1 L 1 L 1 "
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dx /dz

KV
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Gaussian "

-0.02 -

x/dz

-0.03 +
-0.04 |-

-0.05L— . L L
15 10 —05 00 05 10 15
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i
° L:)Z Alamos

NATIONAL LABORATORY

dx/dz

-0.04 -

-0.05

L 1 1
-1.5 —1 .0 —O 5 0.0 0.5 1.0

x(cm)

1.5

Third-order instability of KV beam in FODO structure with
U,=90°, u=45° . Numbers indicate FODO period.
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4th Order KV Beam Instability in FODO Channel

0.05 T 1 ] 0.05 [~ 1 - 1]
0.04 N=0 - 0.04f N=20 -
0.03] | ] 0.03| ]
0.02} | ] 0.02f g <] ]
N 001F | y N 001f ]
° i 1 o I i
> 0.00- ] < 0.00F ]
KV : ool | 5 on |
S -0.01}F ‘ ] T -001F ]
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/\ Fourth-order instability of KV beam in FODO structure with
o LosAIamos U,=90°, y=30° . Numbers indicate FODO period.
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Experiments on Stability of
Transport Beam at LBNL (1985 )
and University of Maryland (1995)

single beam transport channel was constructed at Lawrence Berkeley National
Laboratory using 82 electrostatic quadrupole lenses in a FODO configuration,
using a cesium beam, as part of the heavy-ion inertial-fusion program.
Systematic experiments were conducted by Tiefenback and Keefe, [40] where
the beam was matched in both transverse planes, and both o4 and o /0, were
varied. The envelope instability predicted by K-V periodic-focusing beam-
transport theory for a phase advance per period of oy > 90° led to major
beam degradation with beam loss. No instability modes predicted by K-V
theory, below the oy = 90° envelope instability were observed. Similarly, in
a systematic experimental study carried out in a solenoid focusing lattice at
University of Maryland, [41] the envelope instability was also observed with
major beam loss. This was investigated systematically by varying o/oy and
changing oy from below to above 90°. Below 90°, no other instability predicted
by the theory, including the third-order (sextupole) mode for oy > 60°, was
found. The conclusion is that for real beams in periodic-focusing channels,
the envelope instability predicted by theory for a phase advance per period of
0o > 90° is the only instability of this theory that leads to emittance growth.

180

150

120

90

60

/ ,
N |
-@\0 g ; |
& )
N ¥
A
30 60 90 120 160 180

(70

XCG 865-233

Plotted are calculated ¢ values for stable and
apparently stable beams for various o.. Filled-in
symbols represent beams with the same current
and emittance at the beginning and end of the
lattice. Hollow symbols mark o values derived
from beams reproducing ¢ and current over at least
the last 10 periods, as illustrated in Fig. 3 for o,
=100°. Circles mark o values derived using Ffull
beam distribution RMS emittance. Triangles mark
calculations using central 95% current of the phase
space distribution. The shaded region marks the
calculated instability of the envelope equations.
Curve A marks the region of equivalent o
attainable at injection with our limited source
emittance.

Structure resonances of 31, 4th etc . order are not observed in real beams.

» Los Alamos
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Beam Drift in Free Space

Important case is propagation of the beam in the area
without any external fields. Consider transport of a

“, round beam R =R =R in drift space, described by
o envelope equation
d’R > P’
-—-—=0. D-1
_— d? R® R (®-1)

Equation (D-1) has the first integral:

dR, dR, 3., R, . R,
) —(dz>0+<R0)<1 25)+ P InCo) (D-2)

4

which determines divergence of the beam as a function of
Drift of the beam with finite value of phase space (a)  initial beam parameters, beam current, and beam

beam envelope, (b) phase space deformation. emittance. Eq. (D-2) can be further integrated to
determine distance, where beam with initial radius of R,

and initial divergence R is evolved up the radius R

R> Xy ds

o

Z= (D-3)

= f R
23J1 '
\/[1+(R(’Ie(’)2]s+(})R")zslns—l
3 E}
Eq. (D-3) can be integrated in case of negligible current,
P=0:

A

(P, R, .2 2
- Los Alamos R:v (L0 2) + (2722 (D-4)
NATIONAL LABORATORY
EST.1943 ‘ ‘ R() 76
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Drift of Space-Charge Dominated Beam

Another case 1is drift of the beam with
negligible beam emittance, but non-zero beam

current. Eq. (D-2) has the form

dR, dR., _, R,

= + P~ In(— D-5
(dz) (dz)o (Ro) (D-5)
To determine expansion of the beam from waist
point, let us put initial beam divergence R, =0,

then Eq. (D-5) becomes

dR., iz _
(d_z) =P ln(R ) (D-6)

w

Eq. (D-6) has an approximate solution

Riz 1+40.25Z*-0.017Z° (D-7)

w

z=2" / ! 3 (D-8)
R, \1.(By)

where z is counted from the waist point. Eq.
(D-7) gives good results for for 0 <Z < 3.2 and
I<R/R,, < 3.

ar

(Molokovsky, Sushkov, 2005).

Envelope of an axial-symmetric beam in drift space
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Maximum Beam Current Transported Through the Tube

In practical applications, it is important to know the maximum beam current which can be transported through the
tube of length L and radius R,,,.. From symmetry point, it is clear that beam should have a waist size R = R,, and
zero divergence in the middle of the tube z = z,. Thus, equation (D-6) can be integrated in this case to determine
beam expansion from minimal size R = R,, to max size of R = R,

j — —\/_P(Z %) R=RI/R, (D-9)
max n

The left hand side of Eq. (D-9) has a maximum value of 1.082 for R__ = R,,,./ R,, = 2.35. The maximum radius is

achieved at z—z,=L/2, which in turn yields P L/ (\/— 2R
transported current through the tube is

)=1.082 . From this expression, the maximum

max

I = 1.1716.<ﬁy>3<%>2 . (D-10)

Required beam slope at the entrance of the tube can be determined from Eq. (D-6):

dR 41, R R
— im 1 max \ _ 2 max D_l 1
dz \/ X (>-11)

w
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Optimization of Beam Drift Space

1.2
'O —— < 108 ------------------
L o 0P
E|© '
~|e 0.8 o8l :
< S 3
& P :
& oel ~ 06}
2 E o04f
- 04
2 0.2}
§ 02 0 L 1 1 L] 1 ! 1 1 J
S 0 02 04 06 08110 1.2 14 16 18 20
0.93
0 1 1 i 1 1 1 1 L A — | _ &
0 02 04 06 08 10 12 14 16 18 20 22 dz

Normalized Axial Distance, Z=174fKTZ°—

Figure 11: The position of the mlmmum beam radius as a function of dRy/dZ. From A.S.
Gilmour, Jr.%

Beam radius at waist point, R = R,,, can be determined from Eq. (D-5) as a function of beam radius R, and initial beam
convergence R, assuming in waist point dR/dz = 0

R, =R exp[—(—=— R, )] (D-12)

TS

To determine distance, where the beam reaches it’s waist, let us rewrite Eq. (D-5) including notations, Eq. (D-8):

Z= j (D-13)
\/lnR+(dR /dZ)?
Using substitution u = \/ InR+(dR,/dZ)* , Eq. (D-15) for waist point, where R= 1, is reduced to
Z gy =267 | T xp(u®) du 79 (D-14)
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Beam Current Measurement

FIGURE 6. Classical transformer circuit.

Torus radii ry = 70 mm, v, = 90 mm

Torus thickness [ =16 mm

Torus material Vitrovac 6025: (CoFe)zgy (MoSiB)sgy

Torus permeability pr =~ 10° for f < 100 kHz, p, o 1/f above
Number of windings 10

Sensitivity 4 V/A at R =50 €, 10* V/A with amplifier
Resolution for S/N =1 40 pA,pg for full bandwidth

Tdroop = L /R 0.2 ms

Trise = VLgCs 1 ns

Bandwidth 2 kHz to 300 MHz

Table 2.1: Some basic specification of the GSI passive transformer.

LANL beam current monitor

» Los Alamos
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Faraday Cups

Used as a beam stop for low energy beam
and as a fast current monitor.

Beam Pipe

Faraday Cup

Scope
(IMQ Termination)

100Q2
il W‘
l'll

L eam = V(volts)/100 Q

» Los Alamos
NATIONAL LABORATORY
EST.1943
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Harps (Profile Monitors)

= 1.3 mil carbon wires

= 76 wires

= 20 mil spacing

Soldered on to g-10 board
= 1.5” aperture

_1_...._,_'__.__.

6-JUN-94 12:47 SIZE=2«SIGMA (RMS)

P

2.
 LOnAamos

EST.1943
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A chromiux7(Licht) = = : :JQ-L’Q

View of a Chromolux screen with a Steering magnet
camera. The screen is illuminated by

an external light. The lines have a

separation of 5mm (P.Forck, 2011).

LANSCE phosphor screens illuminated

» Los Alamos by 800 MeV proton beam.
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Beam Position Monitors

A: area of plate

Scheme of pick-up electrode
(P.Forck, 2011).

» Los Alamos
NATIONAL LABORATORY
EST.1943

LANSCE BPM

Value

Resolution Specifications

Parameter
Frequency of Measurement 201.25 MHz
System Response Time 50 ns
Averaging Window for System 100 ps

Position Resolution (% of radius,

0.46% (0.1mm)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

RMS)
Position Accuracy (% of radius) +4.6
Position Range (% of inner +60
electrode radius)
Phase Resolution (RMS) 0.25°
Phase Linearity +2°
Beam Current Resolution (RMS) 0.05 mA
Beam Current Accuracy N/A
Beam Current Range 0.9 to 21 mA
Timing Uncertainty +50 ns
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